也不缺乏科学研究领域的人才,因而,在谨慎利用资源的基础上,各位尽可以发挥自己的特长、遵从个人选择,去进行自己最愿意从事的工作。
只不过,在文明极大发展、跨越奇点前,天马行空的纯粹理论研究与探索,无法得到充裕的资源支持,
对,说白了,就是不能任意调动算力,其他一切倒还好。”
对数学研究者们的要求,经过发言,阿达民并不确定在场的每一个人,是否都能明白。
他只想告诫这些理论造诣或许极高、却沉浸在自我之中的家伙,哪怕是出于学术探讨、研究突破的角度,也务必正视科技、特别是带来的变革,进而将人类的数学研究,推进到一个全新的高度。
数学,正如他在会上所言,形势上的一堆符号、公式、方程与矩阵,看似眼花缭乱,实则不过是人类因自身条件所限,而发明出来的“拐杖”。
但凡是人,天资、教育与努力,可以让能力相差极大,与生俱来的“硬件”却一成不变。
再怎样智慧的研究者,也只能同时处理至多几十个立即数,依靠单线程处理机与规模庞大、调取速度却极差的存储器,进行单路的顺序操作,即便运用抽象思维,也仍然无法脱离基本处理能力的桎梏。
正因如此,面对的问题越大、越繁杂,一个人就越需要时间,去将其用自身能够应付的符号体系,进行转码、分解,
然后才能用自己那可怜的单线程机,化整为零的尝试解决。
纵观整个科学史,作为自然科学基础之一的数学,这种特性尤为突出。
任何问题,要想被人类解决,首先要被人理解,科学研究与应用的一大部分工作,其实都是在后者上花费时间,譬如数学建模,将现实世界的问题转化为数学形式,直到“强人工智能”出现前,仍必须由人类来完成。
一旦完成建模,原则上,接下来的工作便可用数学“无脑”解决,
或直接丢给电子计算机去处理。
多少年来,人类解决现实问题,往往便是这样的一种思路,其中大部分时间、资源与人力,都花费在“分解、重构与描述问题”上。